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We consider classical and quantum strings in the conformally invariant background corresponding to the
SL(2,R) WZWN model. This background is locally anti–de Sitter spacetime with non-vanishing torsion.
Conformal invariance is expressed as the torsion being parallelizing. The precise effect of the conformal
invariance on the dynamics of both circular and generic classical strings is extracted. In particular, the con-
formal invariance gives rise to a repulsive interaction of the string with the background which precisely cancels
the dominant attractive term arising from gravity. We perform both semi-classical and canonical string quan-
tization, in order to see the effect of the conformal invariance of the background on the string mass spectrum.
Both approaches yield that the high-mass states are governed bym;HN ~NPN0 , N ‘‘large’’ !, wherem is the
string mass andH is the Hubble constant. It follows that the level spacing grows proportionally to
N:d(m2a8)/dN;N, while the string entropy goes likeS;Am. Moreover, it follows that there is no Hagedorn
temperature, so that the partition function is well defined at any positive temperature. All results are compared
with the analogue results in anti–de Sitter spacetime, which is a nonconformal invariant background. Confor-
mal invariancesimplifiesthe mathematics of the problem but the physics remains mainlyunchanged. Differ-
ences between conformal and non-conformal backgrounds only appear in the intermediate region of the string
spectrum, but these differences are minor. For low and high masses, the string mass spectra in conformal and
non-conformal backgrounds are identical. Interestingly enough, conformal invariance fixes the value of the
spacetime curvature to be269/(26a8). @S0556-2821~98!00314-2#

PACS number~s!: 11.25.Hf, 11.15.Kc, 98.80.Hw
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I. INTRODUCTION

The systematic investigation of string dynamics in curv
spacetimes started in Ref.@1# has revealed new insight an
new physical phenomena with respect to string propaga
in flat spacetime~and with respect to quantum fields
curved spacetime! @2#. These results are relevant both f
fundamental quantum strings and for cosmic strings, wh
behave in a classical way.

Cosmic strings can be considered in arbitrary curv
spacetime backgrounds, while fundamental quantum str
demand a conformally invariant background for quant
consistency~conformal invariance is a necessary althou
not sufficient condition for consistency!. However, most
curved spacetimes that were historically of physical inter
in general relativity and cosmology are not conformally
variant. On the other hand, certain group-manifolds a
coset-spaces provide a large family of new spacetimes
are conformally invariant, but they are generally not so
teresting from a physical point of view.

The classical and quantum string dynamics and their
sociated effects in a wide class of string backgrounds~con-
formal and non-conformal invariant! have been widely in-
vestigated by the present authors@1,2#.

In this paper, we consider classical and quantum string
0556-2821/98/58~2!/026001~13!/$15.00 58 0260
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the conformally invariant background corresponding to
SL(2,R) Wess-Zumino-Witten-Novikov~WZWN! model.
This background is locally anti–de Sitter spacetime w
non-vanishing parallelizing torsion. The cosmological im
portance of anti–de Sitter spacetime is somewhat less
that of ~say! de Sitter spacetime, but it is in any case
example of a Robertson-Walker spacetime. Moreover, aft
suitable point identification, the background corresponds
the 211 black hole~BH! anti–de Sitter~AdS! spacetime@3#,
which is a toy-model for investigations of black hole ph
nomena in higher dimensions. Thus, our interest in
SL(2,R)-WZWN background is due to a compromise
conformal invariance, physical interest and simplicity.

Many mathematical aspects of theSL(2,R)-WZWN
model have been discussed in the literature~see for instance
Refs. @4–7#!, but we find that the physical aspects have n
really been extracted so far. The purpose of this paper i
investigate directly the effect of the conformal invariance
the string dynamics, both classically and quantum mech
cally. The conformal invariance is expressed via a paral
izing torsion. Thus we consider the string equations of m
tion in a background consisting of the standard anti–de S
metric plus an anti-symmetric tensor representing the pa
lelizing torsion. By considering special as well as gene
solutions to these equations, and by comparing with the a
© 1998 The American Physical Society01-1
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logue results in the absence of torsion, we extract theprecise
effect of the conformal invariance on the dynamics of cl
sical strings. Similarly, after quantization, we extract the
fect of the conformal invariance on the quantum phenome
especially on phenomena related to the quantum mass s
trum.

In the cases of AdS and BH-AdS spacetimes, the tors
corresponding to conformal invariance provides a repuls
term, which in the string dynamics precisely cancels
dominant attractive term arising from gravity.

As a general effect, we find that conformal invarian
simplifies the mathematics of the problem; however,
physics is more or lessunchanged. In fact, in the two limits
n!(H2a8)21 and n@(H2a8)21, of the string mass spec
trum the results obtained here are inexactagreement with
the results obtained without torsion@16,22#. For smalln and
largen, the spectrum is not affected by the conformal inva
ance, while there are some minor changes in the intermed
region.

The frequencies of string oscillators are shifted away fr
integersn:

vn5un6mHa8u, ~1.1!

while in 211 AdS spacetime without torsion, the freque
cies turned out to be@22#

vn5An21m2H2a82 ~without torsion!. ~1.2!

In both cases the frequencies are real and the strings ex
ence completely regular oscillatory behavior. Moreover,
small n (n!mHa8) and largen (n@mHa8), the results
agree, while there is a minor difference in the intermedi
region; in fact, from Eqs.~1.1! and ~1.2! @see also Eqs
~5.35!, ~5.36!# follow that the effect of the conformal invari
ance is to ‘‘complete the square.’’ This effect shows its
too in the mass spectrum@Eqs.~6.9! and ~6.18!#.

Notice that states with the same eigenvalue of
number-operator do not necessarily have the same mass@22#.
This is the case both for the low-mass states and the h
mass states. In the low-mass spectrum, the effect is just
a fine-structure effect, while in the high-mass spectrum,
states are completely mixed up. This is very different fro
Minkowski spacetime where states with the same eigenv
of the number-operator always have the same mass.

Interestingly enough, conformal invariance fixes the va
of the spacetime curvature to be

R52
69

26a8
.

The paper is organized as follows. In Sec. II, we revi
the WZWN construction for the groupSL(2,R). We con-
sider the two parametrizations corresponding to globa
11 anti–de Sitter spacetime and 211 black hole anti–de
Sitter spacetime, respectively. In both cases, we read off
metric and torsion.

In Sec. III, we solve the classical string equations of m
tion and constraints in the above mentioned backgrounds
the special configuration describing an oscillating circu
02600
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string. We compare with the analogue results obtained in
absence of torsion, and then extract and discuss theprecise
effect of the conformal invariance~expressed via the para
lelizing torsion!.

In Sec. IV, we perform a semi-classical quantization
the oscillating circular strings, obtained in Sec. III. In th
way we obtain the semi-classical mass spectrum. Again,
compare with the analogue results obtained in the absenc
torsion, and extract and discuss thepreciseeffect of the con-
formal invariance.

In Sec. V, we consider more generic string configuratio
by solving the classical string equations of motion and c
straints in a perturbative scheme. We compute first and
ond order string-fluctuations around the string center
mass, and derive the classical mass formula. The frequen
of string fluctuations are compared with the analogue res
obtained in the absence of torsion.

In Sec. VI, we perform a canonical quantization of t
oscillator modes, and we derive the quantum mass form
The mass formula is investigated in detail in different r
gimes, and we compare with the results obtained using se
classical quantization in Sec. IV. In particular, we derive t
asymptotic level spacing and the entropy of string states

Finally, in Sec. VII, we give our concluding remarks, an
we discuss possible continuations of our work.

II. CLASSICAL EQUATIONS OF MOTION

To fix our notations and conventions, we give in this se
tion a short review of the WZWN construction for the grou
SL(2,R). This will lead to the classical string equations
motion in the background of (211)-dimensional anti–de
Sitter ~AdS! spacetime with the presence of parallelizing to
sion. A different parametrization of the group manifold lea
to the classical string equations of motion in the backgrou
of 211 dimensional black hole anti–de Sitter~BH-AdS!
spacetime@3# with the presence of parallelizing torsion.

Our starting point is the sigma-model action including t
WZWN term at levelk @8#:

Ss52
k

4p E
M

dtds hab Tr@g21]agg21]bg#

2
k

6p E
B

Tr@g21dg∧g21dg∧g21dg#. ~2.1!

HereM is the boundary of the manifoldB, andg is a group-
element ofSL(2,R):

g5S a u

2v bD , ab1uv51. ~2.2!

Then, the action Eq.~2.1! takes the form@9#

Ss52
k

2p E
M

dtds@ ȧḃ2a8b81u̇v̇2u8v8#

2
k

p E
M

dtds log~u!@ ȧb82a8ḃ#, ~2.3!
1-2
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QUANTUM STRING DYNAMICS IN THE CONFORMAL . . . PHYSICAL REVIEW D 58 026001
where dot and prime denote derivative with respect tot and
s, respectively. We shall now consider a parametrization
the group manifold corresponding to global 211 AdS space-
time. We first introduce new coordinates (X,Y,W,T):

a5H~W1X!, b5H~W2X!,

u5H~T2Y!, v5H~T1Y!, ~2.4!

whereH is a constant~the Hubble constant!. Then we get,
from Eq. ~2.2!,

X21Y22W22T252
1

H2 , ~2.5!

which is the standard embedding equation for 211 AdS
spacetime.

Using the standard parametrization~see for instance@10#!

X5r cosw, W5
1

H
A11H2r 2 cosHt,

Y5r sin w, T5
1

H
A11H2r 2 sin Ht, ~2.6!

the action Eq.~2.3! becomes

Ss52
kH2

2p E
M

dtdsF2~11H2r 2!~ t822 ṫ2!1
r 822 ṙ 2

11H2r 2

1r 2~w822ẇ2!G2
kH3

p E
M

dtds r 2@ ṫw82t8ẇ#.

~2.7!

Let us recall that the generic sigma-model action in the p
ence of metricgmn and anti-symmetric tensorBmn is

Ss5
1

2pa8
E

M
dtds@gmn~ẊmẊn2X8mX8n!

12Bmn~ẊnX8m2ẊmX8n!#. ~2.8!

In our case,Xm5(t,r ,w) and we can then read off:

gtt52~11H2r 2!, grr 5~11H2r 2!21, gww5r 2,

Btw52Bwt5
1

2
Hr 2, ~2.9!

while the level of the WZWN model is related to the strin
tension andH through

k5~H2a8!21. ~2.10!

Thus, the background is 211 AdS spacetime in static coor
dinates~which cover AdS spacetime completely!, plus an
anti-symmetric tensorBmn with a single non-zero componen
Btw .

Alternatively we can parametrize the group-element E
~2.2! in the following way@11#:
02600
f

s-

.

a5
Hr

AM
eAMw, u56AH2r 22M

M
eHAMt,

b5
Hr

AM
e2AMw, v56AH2r 22M

M
e2HAMt,

~2.11!

whereM is a constant. This parametrization holds forH2r 2

2M.0, but analogue expressions hold forH2r 22M,0.
With this parametrization, the action Eq.~2.3! becomes

Ss52
kH2

2p E
M

dtdsF2~H2r 22M !~ t822 ṫ2!1
r 822 ṙ 2

H2r 22M

1r 2~w822ẇ2!G2
kH3

p E
M

dtds r 2@ ṫw82t8ẇ#.

~2.12!

This is of course equivalent to the AdS-action~2.7! in the
caseM521. However, for positiveM , the background cor-
responding to Eq.~2.12! is

gtt52~H2r 22M !, grr 5~H2r 22M !21, gww5r 2,

Btw5
1

2
Hr 2, Bwt52

1

2
Hr 2, ~2.13!

which is the 211 BH-AdS spacetime@3# plus an anti-
symmetric tensorBmn with a single non-zero componen
Btw . And again the level of the WZWN model isk
5(H2a8)21 @12#. We also recall thatM is the mass of the
black hole whileH is the Hubble constant.

We close this section with some general remarks conc
ing the action Eq.~2.8!. The corresponding equations of mo
tion are

Ẍm2X9m1Grs
m ~ẊrẊs2X8rX8s!

1Hrs
m ~ẊrX8s2ẊsX8r!50, ~2.14!

where, as usual,Hmrs5Bmr,s2Bms,r1Brs,m .
The string equations of motion should be supplemen

by the constraints:

gmnẊmX8n50, gmn~ẊmẊn1X8mX8n!50. ~2.15!

It is convenient to introduce world-sheet light-cone coor
nates:

s65t6s. ~2.16!

Then, Eq.~2.14! takes the compact form:

X2
l ¹̄lX1

m 50, ~2.17!

where¹̄l is the generalized covariant derivative defined
terms of the generalized Christoffel symbol:
1-3
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Ḡrs
m 5Grs

m 1Hrs
m . ~2.18!

Notice thatḠrs
m is obviously not symmetric in the two lowe

indices.

III. CIRCULAR STRINGS. CLASSICAL DYNAMICS

To investigate the effect of the conformal invariance
the string dynamics, we shall first consider the special str
configurations representing oscillating circular strings.

We consider the background Eq.~2.9!, corresponding to
the 211 AdS spacetime; the results in the background
~2.13!, corresponding to the 211 BH-AdS spacetime, can
then be obtained immediately.

The ansatz describing oscillating circular strings is

t5t~t!, r 5r ~t!, w5s. ~3.1!

Then, Eqs.~2.14! and ~2.15! lead to

ẗ1
2H2r ṙ ṫ

11H2r 2 1
2Hrṙ

11H2r 2 50, ~3.2!

r̈ 1~11H2r 2!H2r ṫ 21~11H2r 2!r

2
H2r ṙ 2

11H2r 2 12~11H2r 2!Hr ṫ 50, ~3.3!

supplemented by the constraint

2~11H2r 2! ṫ21
ṙ 2

11H2r 2 1r 250. ~3.4!

These three equations~3.2!–~3.4! are consistently integrate
to

ṫ5
E2Hr 2

11H2r 2 , ~3.5!

ṙ 252~112EH!r 21E2, ~3.6!

where E is a non-negative integration constant. Equat
~3.6! can be conveniently written as

ṙ 21V~r !50; V~r !5~112EH!r 22E2, ~3.7!

that is, the potentialV(r ) is quadratic in r . This is a great
simplification as compared to the case of AdS without t
sion. In that case@13#, the potential wasquartic in r and
given by

V~r !5~11H2r 2!r 22E2 ~without torsion! ~3.8!

that is, the solution involved elliptic functions@13#. In the
present case with conformal invariance, the solution is
stead obtained in terms of trigonometric functions~see later!.
Thus, an effect of the conformal invariance is that the ma
ematics simplifies considerably. It is also interesting to n
tice that the torsion, corresponding to conformal invarian
gives rise to repulsion at large distances, while gravity its
02600
g
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gives rise to attraction in AdS spacetime. This follows fro
a comparison of the two potentials Eqs.~3.7! and~3.8!. It is
seen from these expressions that the parallelizing tors
provides the term2H2r 4 for larger , i.e., a repulsive term in
the potential. In fact, this repulsive term precisely cancels
dominant attractive term in the potential Eq.~3.8! in the
absence of torsion. The final outcome, in the presence
conformal invariance, is that the potential, Eq.~3.7!, is still
attractive, but it is onlyquadratic in r .

As for the dynamics of the circular strings in the presen
of conformal invariance, we see from Eq.~3.7! that for a
given value ofE ~and fixedH!, the string oscillates betwee
r 50 andr 5r max:

r max5A E2

112EH
; E>0. ~3.9!

Notice also thatṫ is always positive during the oscillations
In the case of circular strings in the background of 211

BH-AdS spacetime, Eq.~2.13!, one finds in a similar way:

ṫ5
E2Hr 2

H2r 22M
, ~3.10!

ṙ 25~M22EH!r 21E2. ~3.11!

Then, the potential is:

ṙ 21V~r !50; V~r !52~M22EH!r 22E2, ~3.12!

which is againquadratic in r .
In the 211 BH-AdS spacetime, there is an event horiz

at r hor5AM /H, and we demand thatṫ>0 everywhere out-
side the horizon. This leads to the constraint on the integ
tion constantE:

E.
M

H
. ~3.13!

It follows that for a given value ofE fulfilling Eq. ~3.13!, a
circular string has a maximal radiusr 5r max:

r max5A E2

2EH2M
, ~3.14!

it then contracts, crosses the horizon and falls into the bl
hole. Qualitatively, this is the same behavior as in the
sence of torsion@13#. But also in this case of BH-AdS space
time, the conformal invariance simplifies the mathemati
More precisely, as in the case of AdS spacetime, the tors
corresponding to conformal invariance provides a repuls
term, which precisely cancels the dominant attractive te
obtained from gravity.

IV. CIRCULAR STRINGS. SEMI-CLASSICAL
QUANTIZATION

In this section we perform a semi-classical quantization
the circular string configurations in the 211 AdS spacetime,
1-4
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obtained in the previous section. We use an approach de
oped in field theory by Dashenet al. @14# ~see also@15#!,
based on the stationary phase approximation of the fu
tional integral. In our context, this is supposed to be a go
approximation in the ‘‘semi-classical’’ regime whereH2a8
!1.

The method can be only used for time-periodic solutio
of the classical equations of motion. Thus it can be used
the oscillating circular strings in the 211 AdS spacetime.
On the other hand, the circular strings in the 211 BH-AdS
spacetime are not truely time-periodic because of the ca
properties of the background: once the strings have pa
the horizon, they will not re-appear~although the solutions
are formally time-periodic from the mathematical point
view!.

The result of the stationary phase integration is expres
in terms of the functionW(m) @14#:

W~m![Scl„T~m!…1mT~m!, ~4.1!

whereScl is the action of the classical solution,m is the mass
and the periodT(m) is implicitly given by:

dScl

dT
52m. ~4.2!

Here it is important thatT is the period in aphysical time
variable. In our case, it will be the period in the target-spa
time t. The bound state quantization condition then becom
@14#:

W~m!52pn; nPN. ~4.3!

This condition is generally expected to hold forn ‘‘large.’’
In our case, this will correspond to~say! n@H2a8.

We now use this method on the oscillating circular strin
in 211 AdS spacetime, as described by Eqs.~3.5!, ~3.6!.
These equations are solved by:

r ~t!5
E

A112EH
usin@A112EHt#u, ~4.4!

Ht~t!5arctanS 11EH

A112EH
tan@A112EHt# D 2t,

~4.5!

where we took initial conditions such that:

t~0!50, r ~0!50. ~4.6!

The period of the solution, which is twice the period ofr , is
in world-sheet timet given by:

Tt5
2p

A112EH
. ~4.7!

The classical action over one period is obtained from
~2.8!, using Eq.~2.9! and Eqs.~4.4! and ~4.5!:
02600
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Scl5
1

2pa8
E

0

2p

dsE
0

Tt
dt@gmn~ẊmẊn2X8mX8n!

12Bmn~ẊnX8m2ẊmX8n!#52
2

a8
E

0

Tt
dt

~11EH!r 2

11H2r 2

52
4p~11EH!

H2a8 F 1

A112EH
2

1

11EHG . ~4.8!

As explained after Eq.~4.2!, the periodT must be the period
in the physical timet. This period is obtained from Eq.~4.7!
and Eq.~4.5!:

Tt5
2p

H S 12
1

A112EH
D . ~4.9!

Then:

Scl~Tt!52
1

2pa8
Tt

2S 12
HTt

2p D 21

. ~4.10!

From Eq.~4.2! we can then obtain the mass:

m52
dScl

dT
5

1

2pa8
S 2Tt2

HTt
2

2p D S 12
HTt

2p D 22

,

~4.11!

which can be inverted to obtain the physical periodTt :

Tt52p
A11Hma821

HA11Hma8
. ~4.12!

Finally, the quantization condition Eqs.~4.1!–~4.3! becomes:

W~m![Scl„T~m!…1mT~m!52pn, ~4.13!

i.e.:

2p

H2a8
~A11mHa821!252pn. ~4.14!

This equation can be solved form giving:

a8m254nS 11
AH2a8n

2 D 2

, ~4.15!

which gives the spectrum of quantum string states.
Notice that for ‘‘small’’ n (n!(H2a8)21) it gives:

a8m254n, ~4.16!

which is the Minkowski result, while for ‘‘large’’n @n
@(H2a8)21#:

a8m25H2a8n2. ~4.17!

These results must be compared with the analogue re
obtained for circular strings in AdS spacetime butwithout
including torsion@16#. As a general effect, we see that in th
presence of conformal invariance, the mathematics is m
1-5
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simpler. However, the physics is more or lessunchanged. In
fact, in the two limitsn!(H2a8)21 andn@(H2a8)21, the
results obtained here are inexactagreement with the result
obtained without torsion@16#. That is, for smalln and large
n, the spectrum is not affected by the conformal invarian
while there may be some minor changes in the intermed
region.

V. PERTURBATIONS AROUND STRING CENTER
OF MASS

The results in Secs. III and IV were obtained for spec
string configurations. In order to see if these results are m
generic or just particular to the circular strings, we mu
consider more general string configurations.

The equations of motion and constraints Eqs.~2.14!,
~2.15! can in principle be solved exactly in the case
SL(2,R), since it is a group-manifold@17,18#, but the for-
mulas ~see for instance@19#! are formal and not explicit
enough for further investigations of the string dynamics.
stead, we shall use here the method of expansion aroun
string center of mass@1#, that is, we will compute first and
second order string fluctuations around the point-part
geodesic representing the center of mass of the string. In
first subsection, we consider a generic 3-D spacetime w
arbitrary torsion. This subsection is thus the generalizatio
subsection III A in Ref.@13# to the case of a spacetime wit
torsion. Then, in the following subsection, we specialize
the case of 211 AdS spacetime with parallelizing torsion.

A. General formalism

To be more precise, consider first the equations of mo
Eq. ~2.14!; the constraints will be dealt with afterwards. W
then expand@1#

Xm~t,s!5qm~t!1hm~t,s!1jm~t,s!1¯ ~5.1!

where qm(t) represents the string center of mass, wh
hm(t,s) and jm(t,s) are the first and second order strin
perturbations, respectively.

After insertion into Eq.~2.14!, the equations of motion ar
to be solved order by order in the expansion. To zeroth or
we get:

q̇l¹lq̇m50, ~5.2!

which is just the standard general relativity geodesic eq
tion; obviously the torsion does not couple to the string c
ter of mass. To first order in the expansion, we get afte
little algebra the following equation forhm(t,s):

q̇l¹̄l~ q̇d¹̄dhm!2R̄srl
m q̇rq̇shl2h9m

52Hrs
m q̇r~ q̇d¹̄dhs2h8s!, ~5.3!

whereR̄srl
m is the generalized curvature defined via the g

eralized Christoffel symbol Eq.~2.18!:

R̄mnb
l 5Ḡmn,b

l 2Ḡmb,n
l 1Ḡmn

a Ḡab
l 2Ḡmb

a Ḡan
l . ~5.4!
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Notice that Eq.~5.3! is a special case of the generalize
Raychaudhury equation for strings in the presence of tors
@20#. Moreover, if we skip theh8 andh9 terms in Eq.~5.3!,
then it is just the generalized geodesic deviation equa
~see for instance@21#!.

However, we can simplify Eq.~5.3! further. For a massive
string, corresponding to the string center of mass satisfy

gmnq̇mq̇n52m2a82, ~5.5!

there are two physical polarizations of string perturbatio
around the geodesicqm(t) ~we are in a 3-D spacetime!. We
therefore introduce two normal vectorsnR

m (R51,2):

gmnnR
mq̇n50, gmnnR

mnS
n5dRS, ~5.6!

and consider only first order perturbations in the form:

hm5nR
mFR, ~5.7!

whereFR are the comoving perturbations, i.e., the perturb
tions as seen by an observer travelling with the center
mass of the string. It must be noticed that for a string in
three dimensional spacetime, there is only one physical
larization of string perturbations~one transverse direction!,
but since our zeroth order solution is not a string but a po
particle, we get in some sense one polarization of pertur
tions too many at this stage. This extra degree of freed
will eventually have to be eliminated somehow using t
constraints. Notice also that the normal vectors Eq.~5.6! are
not uniquely defined. In fact, there is a gauge invarian
originating from the freedom to make local rotations of t
2-bein spanned by the normal vectors. By generalizing
procedure of Ref.@13# to the case with torsion, we fix this
gauge by taking the normal vectors to satisfy

q̇m¹̄mnR
n 50. ~5.8!

Using Eqs.~5.5!–~5.8! in Eq. ~5.3!, we find after contraction
with gmnnS

n :

F̈S2FS92R̄msrlnS
mnR

l q̇rq̇sFR52Hmrsq̇rnS
mnR

s~ḞR2F8R!,
~5.9!

which for a given background (gmn ,Bmn) must be solved for
FR.

For the second order perturbations, the picture is a li
more complicated since they couple also to the first or
perturbations. We therefore consider the full set of pertur
tions jm:

q̇l¹̄l~ q̇d¹̄djm!2R̄srl
m q̇rq̇sjl2j9m

22Hrs
m q̇r~ q̇d¹̄djs2j8s!5Um. ~5.10!

The termUm, which is bilinear in the first order perturba
tions, plays the role of a source and is explicitly given by
1-6
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Um52Grs
m ~ḣrḣs2h8rh8s!22Hrs

m ḣrh8s

22Grs,l
m q̇rhlḣs22Hrs,l

m q̇rhlh8s

2
1

2
Grs,ld

m q̇rq̇shlhd. ~5.11!

After solving Eqs.~5.9!, ~5.10! for the first and second orde
perturbations, the constraints Eq.~2.15! have to be imposed
In world-sheet light cone coordinatess65t6s, the con-
straints take the form:

T665gmn]6Xm]6Xn50. ~5.12!

The world-sheet energy-momentum tensorT66 is con-
served, as can be easily verified using Eq.~2.14!, and there-
fore can be written:

T225
1

2p (
n

L̃ne2 in~s2t!,

T115
1

2p (
n

Lne2 in~s1t!. ~5.13!

At the classical level, the constraints are then simply:

Ln5L̃n50; nPZ. ~5.14!

The quantum constraints will be considered in Sec. VI. Up
second order in the expansion around the string cente
mass we find:

T6652
1

4
m2a821gmnq̇m]6hn1

1

4
gmn,rq̇mq̇nhr

1gmnq̇m]6jn1gmn]6hm]6hn1gmn,rq̇mhr]6hn

1
1

4
gmn,rq̇mq̇njr1

1

8
gmn,rsq̇mq̇nhrhs. ~5.15!

Formally, this is the same expression as in the absenc
torsion, but one should keep in mind that the solutions foh
andj involve the torsion and are different now.

Notice also that all results derived in this subsection h
for arbitrary torsion~not necessarily parallelizing!. In the
next subsection we apply the above formalism to the cas
strings in the 211 AdS spacetime with parallelizing torsion

B. Strings in 3-D AdS spacetime with parallelizing torsion

We now consider strings in the 211 AdS spacetime with
conformal invariance, as described by the metric and tors
Eq. ~2.9!. For simplicity we consider a string with radiall
moving center of mass:

t5t~t!, r 5r ~t!, w5const. ~5.16!

Then, Eqs.~5.2!, ~5.5! are integrated to:

ṫ5
E

11H2r 2 , ~5.17!
02600
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ṙ 25E22~11H2r 2!m2a82, ~5.18!

whereE is an integration constant@not the same as in Eqs
~3.5!, ~3.6!#. These equations are solved in terms of trigon
metric functions, but we shall not need the explicit expre
sions here. A pair of independent normal-vectors satisfy
Eq. ~5.6! is provided by:

N'
m5S 0,0,

1

r D ,

Ni
m5S ṙ

ma8~11H2r 2!
,

E

ma8
,0D .

~5.19!

However, they do not satisfy the gauge-condition Eq.~5.8!.
We therefore make a local rotation and define normal-vec
(n1

m ,n2
m), satisfying also Eq.~5.8!, by:

S n1
m

n2
mD 5S cos~mHa8t! 2sin~mHa8t!

sin~mHa8t! cos~mHa8t!
D S N'

m

Ni
m D .

~5.20!

Moreover, for the background Eq.~2.9!:

R̄mnb
l 50, ~5.21!

which expresses the fact that the torsion is parallelizing fo
group manifold~see for instance@21#!.

Then, Eq.~5.9! for the first order perturbations reduces t

F̈12F1912mHa8~Ḟ22F28!50, ~5.22!

F̈22F2922mHa8~Ḟ12F18!50. ~5.23!

Considering closed strings, we Fourier expand:

FR5(
n

fRne
2 ins; R51,2, ~5.24!

so that Eqs.~5.22!, ~5.23! become:

S f̈1n

f̈2n
D 12AS ḟ1n

ḟ2n
D 1BS f1n

f2n
D5S 0

0D , ~5.25!

that is, two coupled ordinary linear differential equations
second order with constant~matrix! coefficientsA,B:

A5mHa8S 0 1

21 0D , B5S n2 2inmHa8

22inmHa8 n2 D .

~5.26!

The first ordert-derivatives in Eq.~5.25! are eliminated by a
rotation similar to Eq.~5.20!:

S f1n

f2n
D5S cos~mHa8t! 2sin~mHa8t!

sin~mHa8t! cos~mHa8t!
D S f̂1n

f̂2n
D ,

~5.27!
1-7
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such that:

S f̈̂1n

f̈̂2n

D 1S n21m2H2a82 2inmHa8

22inmHa8 n21m2H2a82D S f̂1n

f̂2n
D 5S 0

0D ,

~5.28!

and the equations are then decoupled by a unitary trans
mation:

S f̂1n

f̂2n
D 5US C1n

C2n
D ; U5

1

&

S i 2 i

1 1 D . ~5.29!

Then, we get:

S C̈1n

C̈2n
D 1S ~n1mHa8!2 0

0 ~n2mHa8!2D S C1n

C2n
D5S 0

0D ,

~5.30!

which are solved by:

C1n5A1ne2 i un1mHa8ut1Ã1nei un1mHa8ut,

C2n5A2ne2 i un2mHa8ut1Ã2nei un2mHa8ut,
~5.31!

where (ARn ,ÃRn) are integration constants.
The final result for the first order comoving perturbatio

is then:

S F1

F2
D5

1

&

(
n

e2 insS ieimHa8t 2 ie2 imHa8t

eimHa8t e2 imHa8t D S C1n

C2n
D .

~5.32!

The constants (ARn ,ÃRn) are constrained by the conditio
that (F1 ,F2) are real. This leads to:

Ã2n5~A12n!†, A2n5~Ã12n!†. ~5.33!

As for the first order perturbationshm, we get:
02600
r-

hm5
1

&

(
n

e2 ins@~Ni
m1 iN'

m!C1n1~Ni
m2 iN'

m!C2n#,

~5.34!

in terms of the normal-vectors Eq.~5.19! and the oscillators
Eq. ~5.31!. This concludes the derivation of the first ord
perturbations. Notice that the frequencies are shifted aw
from integersn:

vn5un6mHa8u, ~5.35!

and that the frequencies are different in the two directio
perpendicular to the geodesic of the string center of mas
is interesting to compare with the similar result in 211 AdS
spacetime but without torsion@22#. In that case, the frequen
cies of the first order perturbations turned out to be@22#:

vn5An21m2H2a82 ~without torsion!. ~5.36!

Thus, in both cases the frequencies are real, and therefor
strings experience completely regular oscillatory behav
Moreover, for small n (n!mHa8) and large n (n
@mHa8), the results agree, while there is a minor diffe
ence in the intermediate region; in fact, from Eqs.~5.35!,
~5.36! follow that the effect of the conformal invariance is
‘‘complete the square.’’

We now come to the second order perturbationsjm, as
determined by Eqs.~5.10!, ~5.11!. The computations are now
going to be somewhat more complicated so we merely g
the results of the different steps. We first re-define thej’s
and the corresponding sourcesU:

j t5 ĵ t, j r5~11H2r 2!ĵ r , jf5
1

r
ĵ w, ~5.37!

Ut5Ût, Ur5~11H2r 2!Ûr , Uf5
1

r
Ûw. ~5.38!

Equation~5.10! then takes the form:
S j̈̂ t

j̈̂ r

j̈̂w

D 2S ĵ 9t

ĵ 9r

ĵ 9w
D 12DS j̇̂ t

j̇̂ r

j̇̂ w

D 12ES ĵ8 t

ĵ8 r

ĵ8 w
D 1FS ĵ t

ĵ r

ĵ w
D 5S Û t

Û r

Û w
D , ~5.39!

where the matricesD, E andF are given by:

D5
H2r

11H2r 2 S ṙ E 0

E ṙ 0

0 0 0
D , ~5.40!

E5
H

11H2r 2 S 0 0 ṙ

0 0 E

~11H2r 2! ṙ 2~11H2r 2!E 0
D , ~5.41!
1-8
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F5
H2

11H2r 2 S 0 2Eṙ 0

0 2E22m2a821H2m2r 2 0

0 0 ~11H2r 2!m2a82
D . ~5.42!

The first ordert-derivatives in Eq.~5.39! are eliminated by the transformation:

S ĵ t

ĵ r

ĵw
D 5GS Ŝ t

Ŝ r

Ŝw
D ; G5ExpS 2E t

D~t8!dt8 D , ~5.43!

that is:

G5
21

~11H2r 2!ma8 S ṙ E 0

E ṙ 0

0 0 2~11H2r 2!ma8
D . ~5.44!
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We now Fourier expand the second order perturbations
the sources:

Ŝm~t,s!5(
n

Ŝn
m~t!e2 ins, ~5.45!

Ûm~t,s!5(
n

Ûn
m~t!e2 ins. ~5.46!

Then, the matrix equation~5.39! reduces to:

S S̈̂n
t

S̈̂n
r

S̈̂n
w

D 1VS Ŝn
t

Ŝn
r

Ŝn
w
D 5G21S Ûn

t

Ûn
r

Ûn
w
D , ~5.47!

where:

V5G21~n2I 1F2D 22Ḋ22inE!G

5S n21m2H2a82 0 2inmHa8

0 n2 0

22inmHa8 0 n21m2H2a82
D . ~5.48!

Thus, the second order perturbations are determined by
of three coupled linear ordinary differential equations of s
ond order with constant~matrix! coefficients and a compli
cated source-term. It follows that the complete solution
known explicitly: The matrix, Eq.~5.48!, is diagonalized in
the same way as in Eq.~5.29!. The full solutions for the three
second order perturbations are then written as free w
parts with frequenciesun1mHa8u, un2mHa8u and n, re-
spectively, plus particular solutions involving integrals of t
sources. This concludes the derivation of the second o
perturbations.
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Having calculated the first and second order perturbatio
we can now also calculate the world-sheet ener
momentum tensorT66 , Eqs.~5.12!–~5.15!. This calculation
is simplified using the fact thatT66 are functions ofn(s
6t) while the first order perturbationshm are functions of
(ns6un6mHa8ut). The first order perturbations can ther
fore only give constant contributions toT66 . It is then

straightforward to computeL0 and L̃0 :

L05p(
n

@~ un1mHa8u1n!2A1nA1n
†

1~ un2mHa8u1n!2A2nA2n
† #2

p

2
m2a82,

~5.49!

L̃05p(
n

@~ un1mHa8u2n!2A1nA1n
†

1~ un2mHa8u2n!2A2nA2n
† #2

p

2
m2a82.

~5.50!

The constraints Eq.~5.14! for n50 then become:

(
n

n@ un1mHa8uA1nA1n
† 1un2mHa8uA2nA2n

† #50,

~5.51!

as well as:

m2a8252(
n

@„~n1mHa8!21n2
…A1nA1n

†

1„~n2mHa8!21n2
…A2nA2n

† #, ~5.52!
1-9
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determining the mass of the string. Notice that the mass
mula of the string is modified with respect to the usual fl
spacetime expression (m2a8254(nn2@A1nA1n

† 1A2nA2n
† #).

The reason for this modification is of course the presenc
the cosmological constant through both gravity and torsi

VI. THE QUANTUM MASS FORMULA

In this section we perform the canonical quantization
ing the results of the previous section. The first order com
ing perturbations are described by the action@compare with
Eqs.~5.22!, ~5.23!#:

S~2!52
1

4pa8
E dtdshabdRS

3~F ,a
R 1AaU

R FU!~F ,b
S 1AbV

S FV!, ~6.1!

where the vector-potentialAa
RS is anti-symmetric in the

RS-indices, and explicitly given by:

At
125As

125mH. ~6.2!

Again, it is interesting to compare with the analogue act
in the absence of torsion@22#. In that case, the action for th
comoving first order perturbations involved ascalar poten-
tial. Thus we see that the effect of the conformal invarian
precisely is to cancel this scalar potential and replace it b
vector potential. This actually follows more generally from

Eq. ~5.9!. The scalar potential comes from theR̄msrl-term,
while the vector potential comes from the term on the rig
hand side. Then, in the absence of torsion in AdS spacet
the scalar potential survives but there is no vector poten
On the other hand, with torsion corresponding to conform
invariance in AdS spacetime, the vector potential surviv
but there is no scalar potential since the torsion is paralle

ing (R̄msrl50).
The momentum conjugate toFR is:

PR[
dS~2!

d~ḞR!
5

1

2pa8
~Ḟ R1mHeRSF

S!; e1251.

~6.3!

We now go directly to the quantum theory. The canoni
commutation relations become:

@FR,FS#5@PR ,PS#50,

@PR ,FS#52 idR
Sd~s2s8!. ~6.4!

It follows that the constantsARn andÃRn
introduced in Eqs.

~5.31!–~5.33!, which are now considered as quantum ope
tors, have the following commutation relations:

@A1n ,A1n
† #5

a8

2un1mHa8u
,

@A2n ,A2n
† #5

a8

2un2mHa8u
. ~6.5!
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It is convenient to make the redefinitions:

A1n[5 ãn
1A a8

2un1mHa8u
, n.0,

a2n
2 A a8

2un1mHa8u
, n,0,

A2n[5 ãn
2A a8

2un2mHa8u
, n.0,

a2n
1 A a8

2un2mHa8u
, n,0,

~6.6!

and similarly for the Hermitian conjugates. Thean
R and ãn

R

represent conventionally normalized oscillators~no summa-
tion overR!:

@an
R ,~an

R!†#5@ ãn
R ,~ ãn

R!†#51 for all n.0

@A0
R,~A0

R!†#5
1

2mH
. ~6.7!

The classical constraintsL05L̃050 in the quantum theory
take the form:

~L022pa8a!uc&5~ L̃022pa8a!uc&50, ~6.8!

wherea is the normal-ordering constant and the factor 2pa8
is introduced for later convenience. The normal-order
constant is most easily obtained by symmetrization of
oscillator products in Eqs.~5.49!, ~5.50!.

The physical state conditions Eq.~6.8!, in terms of the
conventionally normalized oscillators, then become:

m2a85 (
n.0

F ~n1mHa8!21n2

un1mHa8u
1

~n2mHa8!21n2

un2mHa8u G
1 (

n.0
F ~n1mHa8!21n2

un1mHa8u
„~an

1!†an
11~ ãn

1!†ãn
1
…G

1 (
n.0

F ~n2mHa8!21n2

un2mHa8u
„~an

2!†an
21~ ãn

2!†ãn
2
…G ,
~6.9!

and:

(
n.0

n@~an
R!†an

R2~ ãn
R!†ãn

R#50, ~6.10!

where the zero-modes have been eliminated.
Equation~6.10! simply expresses that there must be

equal amount of left-movers and right-movers, so let us n
consider the quantum mass formula Eq.~6.9! in a little more
detail. The first term in Eq.~6.9! represents the zero-poin
energy. At the present stage it is formally infinite and need
be renormalized, but since it is just an overall constant,
skip it for the moment and concentrate on the oscillator pa
1-10
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of Eq. ~6.9!. As in Minkowski spacetime, it is convenient t
characterize the physical states by the eigenvalue of
number-operator:

N5
1

2 (
n.0

@~an
R!†an

R1~ ãn
R!†ãn

R#. ~6.11!

Returning to Eq.~6.9!, we first notice that we get the corre
Minkowski spacetime result~as we should! in the limit H
50. Moreover, for the low-mass states (mHa8!1), the
spectrum is just the Minkowski spectrum with small corre
tions of orderH2a8 ~we always assumeH2a8!1!,

m2a854N1O~H2a8!; ~ low-mass states!, ~6.12!

and we skipped the zero-point energy.
Consider now the high-mass states (mHa8@1). As an

example, we consider the state:

@~ ã1
1!†~a1

1!†#Nu0&, ~6.13!

for some largeN ~say! N@(H2a8)21. This is a state with
eigenvalueN of the number-operator, and its mass is a
proximately:

m2a8'4H2a8N2. ~6.14!

As another example of a high-mass state, consider~for N
even!:

@~ ã2
1!†~a2

1!†#N/2u0&. ~6.15!

This state also has eigenvalueN of the number-operator, bu
its mass is approximately:

m2a8'H2a8N2. ~6.16!

More generally, we find for the high-mass states~up to a
numerical factor!:

m2a8;H2a8N2 ~high-mass states!. ~6.17!

Notice that states with the same eigenvalue of the num
operator@for instance the states Eqs.~6.13!, ~6.15!#, do not
necessarily have the same mass. This is the case both fo
low-mass states and the high-mass states. In the low-m
spectrum, the effect is just like a fine-structure, while in t
high-mass spectrum, the states are completely mixed
This is very different from the case of Minkowski spacetim
where states with the same eigenvalue of the num
operator always have the same mass.

Finally, we should compare also with the results obtain
for AdS spacetime but without torsion@22#. In that case, the
mass formula was found to be:

m2a852(
n.0

2n21m2H2a82

An21m2H2a82
1 (

n.0

2n21m2H2a82

An21m2H2a82

3@~an
R!†an

R1~ ãn
R!†ãn

R#. ~6.18!
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It follows that the results agree in the low-mass spectrum
in the high-mass spectrum, while there is a minor differen
in the intermediate region. In fact, as already discussed
connection with the frequencies of the first order pertur
tions @see the discussion after Eq.~5.36!#, the effect of the
conformal invariance is to ‘‘complete the squares.’’

It means that the conclusions obtained in Ref.@22# for
AdS spacetime without torsion generally hold as well in t
presence of torsion, corresponding to conformal invaria
~parallelizing torsion!. In particular, the scale of the high
mass states is set by the Hubble constantH ~and not bya8!
as follows from Eq.~6.17!.

Moreover, the level spacing corresponding to Eq.~6.17!,
grows proportionally toN:

d~m2a8!

dN
}N. ~6.19!

This is contrary to the case of Minkowski spacetime wher
is constant. As shown in@22#, this implies that the density o
levels,r(m) grows like;eAm/H and that the partition func-
tion for a gas of strings in AdS spacetime is well-defined
any temperatureb21 ~with or without torsion!. That is, there
is no Hagedorn temperature in AdS spacetime.

It also follows from Eq.~6.17! that the entropy is propor
tional to Am:

S;AN;Am, ~6.20!

where we skipped numerical factors. It is interesting to n
tice that this result is formally similar to the recent results
the entropy obtained for the quantization of the 211 BH-
AdS spacetime@23#.

Notice also that the results of the canonical quantizat
obtained in this section agree with the results obtained
semi-classical quantization of circular strings obtained
Sec. IV.

VII. CONCLUSIONS

In conclusion, we have considered classical and quan
strings in 211 dimensional anti–de Sitter spacetime wi
parallelizing torsion, corresponding to the conformally i
variantSL(2,R)-WZWN background.

By considering special and generic string configuratio
classically and quantum mechanically, we have extracted
preciseeffects of the conformal invariance, both on the cla
sical dynamics of strings and on the quantum mass spect

Generally, we have seen that the conformal invarian
leads to a number of mathematical simplifications. On
other hand, the physical properties turn out to be more or
unchanged, as compared to the case without torsion.

This means that the original results obtained in A
spacetime without torsion@13,16,22# still hold in the pres-
ence of conformal invariance, that is, in the presence of p
allelizing torsion. At the quantum level, this means in pa
ticular that the high-mass states are governed by:

m;HN; NPN0 ~N ‘ ‘ large’’ !, ~7.1!
1-11
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wherem is the string mass andH is the Hubble constant. I
follows that the level spacing grows proportionally toN:

d~m2a8!

dN
;N, ~7.2!

while the entropy goes like:

S;Am. ~7.3!

Moreover, it follows that there is no Hagedorn temperatu
so that the partition function is well-defined at any tempe
ture.

These results were obtained using two independent m
ods, namely semi-classical quantization of circular oscil
ing strings and canonical quantization of string oscilla
modes. The results of the two approaches agree and
agree with the results obtained for vanishing tors
@13,16,22#.

The central charge in the 211 AdS WZWN model takes
the value@24,6,25#:

c5
3k

k22
.

Conformal invariance thus holds fork such thatc526. This
leads to the value fork:

k5
52

23
. ~7.4!

This means that conformal invariance holds provided
string tension andH are related as follows:

H5
1

Aka8
5A 23

52a8
,

where we used Eqs.~2.10! and ~7.4!.
Moreover, the scalar curvature takes then the value

R52
6

ka8
52

69

26a8
.

-
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It would be interesting to generalize our analysis to high
dimensional anti–de Sitter spacetime AdSD . Contrary to the
three dimensional case, AdSD can generally not be describe
as a group-manifold. It can however be represented a
coset-space:

AdSD5
SO~D21,2!

SO~D21,1!
. ~7.5!

It follows that AdSD is generally not conformally invariant
However, as shown in Refs.@24,6#, conformal invariance can
be achieved for certain values of the cosmological const
More precisely, the central charge of the WZWN model
level k for the coset represented in Eq.~7.5! is @24,6,25#:

C5
kD~D11!

2@k112D#
2

kD~D21!

2@k122D#
. ~7.6!

As shown in Ref.@24#, the condition of conformal invari-
ance,

C526, ~7.7!

has solutions in anarbitrary number of dimensions. How
ever, in each dimension, the cosmological constant must
very specific values. That is, Eqs.~7.6!, ~7.7! lead to an equa-
tion of the form:k5k(D) with solutionsD,k(D) for arbi-
trary values ofD.

For our purposes, we would have to consider the gau
WZWN models corresponding to the coset-spaces Eq.~7.5!
@19,26#. This would allow us to read off the correspondin
metric and antisymmetric tensor, which are necessary for
investigation of string dynamics in these backgrounds. T
is currently under investigation.
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