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We consider classical and quantum strings in the conformally invariant background corresponding to the
SL(2,R) WZWN model. This background is locally anti—de Sitter spacetime with non-vanishing torsion.
Conformal invariance is expressed as the torsion being parallelizing. The precise effect of the conformal
invariance on the dynamics of both circular and generic classical strings is extracted. In particular, the con-
formal invariance gives rise to a repulsive interaction of the string with the background which precisely cancels
the dominant attractive term arising from gravity. We perform both semi-classical and canonical string quan-
tization, in order to see the effect of the conformal invariance of the background on the string mass spectrum.
Both approaches yield that the high-mass states are govermad-N (Ne Ny, N “large” ), wherem is the
string mass ancH is the Hubble constant. It follows that the level spacing grows proportionally to
N:d(m?a’)/dN~ N, while the string entropy goes lik~ \/m. Moreover, it follows that there is no Hagedorn
temperature, so that the partition function is well defined at any positive temperature. All results are compared
with the analogue results in anti—de Sitter spacetime, which is a nonconformal invariant background. Confor-
mal invariancesimplifiesthe mathematics of the problem but the physics remains mamipangedDiffer-
ences between conformal and non-conformal backgrounds only appear in the intermediate region of the string
spectrum, but these differences are minor. For low and high masses, the string mass spectra in conformal and
non-conformal backgrounds are identical. Interestingly enough, conformal invariance fixes the value of the
spacetime curvature to be69/(26x"). [S0556-282198)00314-2

PACS numbgs): 11.25.Hf, 11.15.Kc, 98.80.Hw

I. INTRODUCTION the conformally invariant background corresponding to the
SL(2,R) Wess-Zumino-Witten-Novikov(WZWN) model.
The systematic investigation of string dynamics in curvedThis background is locally anti-de Sitter spacetime with
spacetimes started in Réfl] has revealed new insight and non-vanishing parallelizing torsion. The cosmological im-
new physical phenomena with respect to string propagatioportance of anti—de Sitter spacetime is somewhat less than
in flat spacetime(and with respect to quantum fields in that of (say de Sitter spacetime, but it is in any case an
curved spacetime[2]. These results are relevant both for example of a Robertson-Walker spacetime. Moreover, after a
fundamental quantum strings and for cosmic strings, whictsuitable point identification, the background corresponds to
behave in a classical way. the 2+ 1 black hole(BH) anti—de SittefAdS) spacetimég3],
Cosmic strings can be considered in arbitrary curvedvhich is a toy-model for investigations of black hole phe-
spacetime backgrounds, while fundamental quantum stringsomena in higher dimensions. Thus, our interest in the
demand a conformally invariant background for quantumSL(2,R)-WZWN background is due to a compromise of
consistency(conformal invariance is a necessary althoughconformal invariance, physical interest and simplicity.
not sufficient condition for consistencyHowever, most Many mathematical aspects of th8L(2,R)-WZWN
curved spacetimes that were historically of physical interesiodel have been discussed in the literatisee for instance
in general relativity and cosmology are not conformally in- Refs.[4—7]), but we find that the physical aspects have not
variant. On the other hand, certain group-manifolds andeally been extracted so far. The purpose of this paper is to
coset-spaces provide a large family of new spacetimes thativestigate directly the effect of the conformal invariance on
are conformally invariant, but they are generally not so in-the string dynamics, both classically and qguantum mechani-
teresting from a physical point of view. cally. The conformal invariance is expressed via a parallel-
The classical and quantum string dynamics and their aszing torsion. Thus we consider the string equations of mo-
sociated effects in a wide class of string backgroufmm-  tion in a background consisting of the standard anti—de Sitter
formal and non-conformal invarianbave been widely in- metric plus an anti-symmetric tensor representing the paral-
vestigated by the present authis2]. lelizing torsion. By considering special as well as generic
In this paper, we consider classical and quantum strings igolutions to these equations, and by comparing with the ana-
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logue results in the absence of torsion, we extracptieeise  string. We compare with the analogue results obtained in the
effect of the conformal invariance on the dynamics of clas-absence of torsion, and then extract and discuspibeise
sical strings. Similarly, after quantization, we extract the ef-effect of the conformal invariancexpressed via the paral-
fect of the conformal invariance on the quantum phenomendglizing torsion.

especially on phenomena related to the quantum mass spec-In Sec. IV, we perform a semi-classical quantization of
trum. the oscillating circular strings, obtained in Sec. lll. In this

In the cases of AdS and BH-AdS spacetimes, the torsiomvay we obtain the semi-classical mass spectrum. Again, we
corresponding to conformal invariance provides a repulsiv&eompare with the analogue results obtained in the absence of
term, which in the string dynamics precisely cancels theorsion, and extract and discuss treciseeffect of the con-
dominant attractive term arising from gravity. formal invariance.

As a general effect, we find that conformal invariance In Sec. V, we consider more generic string configurations
simplifies the mathematics of the problem; however, theby solving the classical string equations of motion and con-
physics is more or lessnchangedin fact, in the two limits  straints in a perturbative scheme. We compute first and sec-
n<(H?%a')"! andn>(H?a’) "1, of the string mass spec- ond order string-fluctuations around the string center of
trum the results obtained here areeractagreement with mass, and derive the classical mass formula. The frequencies
the results obtained without torsiph6,27. For smalln and  of string fluctuations are compared with the analogue results
largen, the spectrum is not affected by the conformal invari-obtained in the absence of torsion.
ance, while there are some minor changes in the intermediate In Sec. VI, we perform a canonical quantization of the

region. oscillator modes, and we derive the qguantum mass formula.
The frequencies of string oscillators are shifted away fromThe mass formula is investigated in detail in different re-
integersn: gimes, and we compare with the results obtained using semi-
classical quantization in Sec. IV. In particular, we derive the
wp=[n=mHa’|, (1.)  asymptotic level spacing and the entropy of string states.

o . ) ) Finally, in Sec. VII, we give our concluding remarks, and
while in 2+1 AdS spacetime without torsion, the frequen- e discuss possible continuations of our work.

cies turned out to bg22]

0= \/HTmW (without torsion. (1.2) Il. CLASSICAL EQUATIONS OF MOTION

To fix our notations and conventions, we give in this sec-
n a short review of the WZWN construction for the group
L(2,R). This will lead to the classical string equations of
motion in the background of (21)-dimensional anti—de

E“Sitter(AdS) spacetime with the presence of parallelizing tor-

region; in fact, from Egs(1.1) and (1.2) [see also Egs. sion. A different g :
. : . parametrization of the group manifold leads
(5.39, (5.36] follow that the effect of the conformal invari- to the classical string equations of motion in the background

ance is to “complete the square.” This effect shows itseh‘of 2+1 dimensional black hole anti—de SittéBH-AdS)

too in the mass spectrufiEgs. (6.9) and (6.18)]. spacetimg 3] with the presence of parallelizing torsion.

Notice that states with the same eigenvalue of the ™ g, starting point is the sigma-model action including the
number-operator do not necessarily have the same [fBaks WZWN term at levelk [8]:

This is the case both for the low-mass states and the high-
mass states. In the low-mass spectrum, the effect is just like k
a fine-structure effect, while in the high-mass spectrum, the Sy=—— f drdo p%# Tr[gflﬁaggfléﬂg]
. .. . 4 M
states are completely mixed up. This is very different from
Minkowski spacetime where states with the same eigenvalue k
of the number-operator always have the same mass. o f Trg dgdg tdgdg ldg]. (2.1
Interestingly enough, conformal invariance fixes the value T B
of the spacetime curvature to be

In both cases the frequencies are real and the strings expe{fb
ence completely regular oscillatory behavior. Moreover, forS
smalln (n<mHea') and largen (n>mHea'), the results

agree, while there is a minor difference in the intermediat

HereM is the boundary of the manifold, andg is a group-

69 element ofSL(2,R):
- 26’ a u
. . i g= , ab+uv=1. (2.2
The paper is organized as follows. In Sec. Il, we review -v b

the WZWN construction for the groupL(2,R). We con- )
sider the two parametrizations corresponding to global 27hen. the action Eq2.1) takes the forn{9]
+1 anti—de Sitter spacetime and+4 black hole anti—de K
Sitter spacetime, respectively. In both cases, we read off the Sy=—o— f drdofab—a’b’ +uv—u'v’]
metric and torsion. 27 Jwm
In Sec. lll, we solve the classical string equations of mo- K
tion and (;onstraints in _the abovq mentioned b_ackgroupds, for _ = J drdo log(u)[ab’—a’b], 2.3
the special configuration describing an oscillating circular T Jm
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where dot and prime denote derivative with respect &md

o, respectively. We shall now consider a parametrization of a=
the group manifold corresponding to globat2 AdS space-

time. We first introduce new coordinateX,{,W,T):
a=H(W+X),
u=H(T-Y),

b=H(W—X),

v=H(T+Y), (2.4)

whereH is a constantthe Hubble constajpt Then we get,

from Eq.(2.2),

X2+Y2—W2—T2=—m, (2.5
which is the standard embedding equation for 2 AdS
spacetime.

Using the standard parametrizatiee for instancgl0])

1
X=rcosg, W= 1+ H?r? cosHt,
. 1 .
Y=r sin ¢, T— 1+H?r? sin Ht, (2.6
the action Eq(2.3) becomes
kH2 ] r/2_i.2
= — 2,2\(+12_ 42 -
: kH3 ) .
+r2(@'%—¢?) ——f drdor?te’ —t'¢].
T Jm
2.7

Let us recall that the generic sigma-model actlon in the pres-

ence of metrieg,,, and anti-symmetric tensd,,
S, = ! fd d XHXY— X #X!"Y
o= ma |47 alg,.( )

+2B,,, (X" X E=XEX"")]. (2.9

In our caseX*=(t,r,¢) and we can then read off:

gu=—(1+H7?), g =(1+HZA)7L, g, =r?,

1
(’Dt:_Hrz,

5 (2.9

while the level of the WZWN model is related to the strlng

tension andH through

k=(H%a")" L. (2.10
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_ H%r2—M
_ VMo — + . VMt
e , u== e )
JM M
2,2 __
b= Hr e*\e“mqo v=+ Hr M efH\e“Vt
\/M L) M 7

(2.11

whereM is a constant. This parametrization holds Ffr?
—M>0, but analogue expressions hold féfr>—M<O0.
With this parametrization, the action E@®.3) becomes

kH2 ,2_|.'2
_ 2.2 _ 1232y
S,=— o deO’ —(Her==M)(t t9)+ HZr2—M
: kH3 , .
+r2(@'%—¢?) ——f drdor?te’ —t' ¢].
™ M

(2.12

This is of course equivalent to the AdS-acti¢h?) in the
caseM = — 1. However, for positivéM, the background cor-
responding to Eq(2.12) is

gtt:_(Her_M)! grr:(Her_M)711 g(pq;:rzy
1 2 1 2
BthiHr y B(Pt:_EHr y (213

which is the 2+1 BH-AdS spacetimg3] plus an anti-
symmetric tensoB,, with a single non-zero component
Bi,. And again the level of the WZWN model ik
—(Hza’) 1[12). We also recall thaM is the mass of the
black hole whileH is the Hubble constant.

We close this section with some general remarks concern-
ing the action Eq(2.8). The corresponding equations of mo-
tion are

XH—X"# 4+ TH (XPXT—XPX'9)

+HE (XPX'7=X7X'?)=0, (2.1

where, as usuaH,,,=B,, o= Bus T B,

The string equations of m0t|0n should be supplemented
by the constraints:

(2.19

It is convenient to introduce world-sheet light-cone coordi-

9 XEX'7=0, g, (XX +X#X")=0.

*

o-=71*o0.

(2.19

Thus, the background is21 AdS spacetime in static coor- Then, Eq.(2.14 takes the compact form:

dinates(which cover AdS spacetime completghplus an
anti-symmetric tensaB ,, with a single non-zero component

Big -

XAV, X~ =0, (2.17

Alternatlvely we can parametrize the group-element EqwhereVA is the generalized covariant derivative defined in

(2.2) in the following way[11]:

terms of the generalized Christoffel symbol:
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TH =T* +H~ . (2.18 gives rise to attraction in AdS spacetime. This follows from
po S po kT a comparison of the two potentials E¢3.7) and(3.9). It is

seen from these expressions that the parallelizing torsion

provides the term-H?2r* for larger, i.e., a repulsive term in

the potential. In fact, this repulsive term precisely cancels the

dominant attractive term in the potential E.8) in the

absence of torsion. The final outcome, in the presence of
To investigate the effect of the conformal invariance onconformal invariance, is that the potential, £8.7), is still

the string dynamics, we shall first consider the special stringttractive, but it is onlyquadraticin r.

configurations representing oscillating circular strings. As for the dynamics of the circular strings in the presence
We consider the background E@.9), corresponding to of conformal invariance, we see from E(.7) that for a

the 2+1 AdS spacetime; the results in the background Eqgiven value ofE (and fixedH), the string oscillates between

(2.13, corresponding to the 21 BH-AdS spacetime, can =0 andr=r .

then be obtained immediately.

Notice thath(, is obviously not symmetric in the two lower
indices.

lll. CIRCULAR STRINGS. CLASSICAL DYNAMICS

The ansatz describing oscillating circular strings is | B
I max™ 1+ 2EH’ E=0. (3.9)
t=t(7r), r=r(7r), o¢=o. (3.1

Notice also that is always positive during the oscillations.

Then, Bqs(2.14 and(2.19 lead to In the case of circular strings in the background ef 2

. 2H2rr t . 2HrT . - BH-AdS spacetime, Eg2.13), one finds in a similar way:
T AR T 33 . E—Hr?
t=—>>——, 3.1
= 2,.2\142042 2,2 Hr?—M (319
r+(1+Hr9)Hrtc+(1+Hr)r
H2pp2 r?=(M—2EH)r?+Eg2 (3.11)
— ——55+2(1+H?r?)Hrt=0, 3.3
L ) 33 Then, the potential is:
supplemented by the constraint F24V(r)=0; V(r)=—(M—2EH)r2—E2, (3.12
.2 . . . . .
—(1+H2r?2)i2+ +r2=0. 3.4 which is againquadraticin r.
( ) 1+H?%r? 349 In the 2+ 1 BH-AdS spacetime, there is an event horizon

at rpo=+M/H, and we demand that=0 everywhere out-

These three equation8.2~(3.4) are consistently integrated side the horizon. This leads to the constraint on the integra-

to tion constante:
. E—Hr? 2 M
C1+H%* @5 B> (3.13
r?=—(1+2EH)r2+E?, (3.6

It follows that for a given value oE fulfilling Eq. (3.13, a

. L . . __circular string h maximal radius=r ,.,:
where E is a non-negative integration constant. EquatlonC cular string has a maximal radins=r max

(3.6) can be conveniently written as E2
2 2_ g2 = \ 2EH—M" 319
r<+V(r)=0; V(r)=(1+2EH)r-—E*, (3.7

that is, the potential/(r) is quadraticin r. This is a great it then contracts, crosses the horizon and falls into the black

simplification as compared to the case of AdS without tor-nole. Qualitatively, this is the same behavior as in the ab-
sion. In that casé13], the potential wagjuartic in r and ~ Sence of torsiofil3]. But also in this case of BH-AdS space-
given by time, the conformal invariance simplifies the mathematics.

More precisely, as in the case of AdS spacetime, the torsion
V(r)=(1+H?%?r2—E? (without torsion (3.8)  corresponding to conformal invariance provides a repulsive
term, which precisely cancels the dominant attractive term
that is, the solution involved elliptic functiorfd3]. In the  obtained from gravity.

present case with conformal invariance, the solution is in-

stead obtained in terms of trigonqmetr.ic funqticﬁsee later. IV. CIRCULAR STRINGS. SEMI-CLASSICAL

Thus, an effect of the conformal invariance is that the math- QUANTIZATION

ematics simplifies considerably. It is also interesting to no-

tice that the torsion, corresponding to conformal invariance, In this section we perform a semi-classical quantization of
gives rise to repulsion at large distances, while gravity itselthe circular string configurations in thet2L AdS spacetime,
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obtained in the previous section. We use an approach devel- 1 27 T, oo
oped in field theory by Dasheet al. [14] (see alsd15]), — Sa=5_7 J dfff dr{ g, (XHX"=X"#X"")
based on the stationary phase approximation of the func- 0 0

tional integral. In our context, this is supposed to be a good ) _ 2 (T, (L+EH)r?
approximation in the “semi-classical” regime wheH?a' + 2B, (XX = XEX) ] == —7 Jo dr =7z
<1.
The method can bg only used_ for tlme-perlodlc solutions 4m(1+EH) 1 1
of the classical equations of motion. Thus it can be used for =— — . (4.9
ilating ci inas i : H%' | /1+2EH 1+EH
the oscillating circular strings in the21 AdS spacetime. 1+2EH

On the other hand, the circular strings in the 2 BH-AdS ) , i
spacetime are not truely time-periodic because of the caus&® exPlained after Eq4.2), the periodT must be the period
properties of the background: once the strings have passéd the physical time. This period is obtained from E¢4.7)
the horizon, they will not re-appedalthough the solutions 2"d EG.(4.5):
are formally time-periodic from the mathematical point of

view). _ _ o T=—|1-—|. (4.9
The result of the stationary phase integration is expressed H V1+2EH
in terms of the functioW(m) [14]:
Then:
W(m)=S;(T(m))+mT(m), (4.) L Tt
- _ 2q 't
whereS, is the action of the classical solutiam,is the mass Sa(Ty)= 2m7a’ Tif 1 277) ' (4.10
and the periodr'(m) is implicitly given by: .
From Eq.(4.2) we can then obtain the mass:
d
em. (4.2) dsy 1 HT? HT,| 2
dT = — 1— —1!
dT 27a’ to2g 2w '
Here it is important thaf is the period in gphysicaltime (4.11

variable. In our case, it will be the period in the target-space , . . . .
timet. The bound state quantization condition then becomegvhICh can be inverted to obtain the physical perigd

(145 JI+Hma -1
T=27r—— (4.12
W(m)=2mn; neN. 4.3 HV1+Hma'
This condition is generally expected to hold for‘large.”  Finally, the quantization condition Eq@t.1)—(4.3) becomes:
In our case, this will correspond {@ay n>H?a’. . _
We now use this method on the oscillating circular strings W(m)=S;(T(m))+mT(m) =2, (4.13
in 2+1 AdS spacetime, as described by E(&5), (3.6). e
These equations are solved by:
2
E ——(J1+mHa'—1)2=27n. (4.19
. Ha
r(r)= —=|sin y1+2EHT7]|, (4.9
( 1+2EH| "t I , , .
This equation can be solved far giving:
1+EH A2a'n) 2
Ht(r)=arctar(mtar{\/1+2EHT] -, a'm?=4nl| 1+ 5 ) ’ (413
(4.9
which gives the spectrum of quantum string states.
where we took initial conditions such that: Notice that for “small” n (n<(H?a') %) it gives:
t(0)=0, r(0)=0. (4.6) a'm?=4n, (4.16
The period of the solution, which is twice the periodrofis ~ Which is the Minkowski result, while for “large”n [n
in world-sheet timer given by: >(H?%a') " 1:
o a'm*=H?a'n?, (4.17
T,=——. 4.7 .
J1+2EH These results must be compared with the analogue results

obtained for circular strings in AdS spacetime lwithout
The classical action over one period is obtained from Egincluding torsion16]. As a general effect, we see that in the
(2.8), using Eq.(2.9) and Eqgs.(4.4) and (4.5): presence of conformal invariance, the mathematics is much
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simpler. However, the physics is more or lesghangedin Notice that Eq.(5.3) is a special case of the generalized
fact, in the two limitsn<(H?a’) ! andn>(H?a’) "%, the  Raychaudhury equation for strings in the presence of torsion
results obtained here are éxactagreement with the results [20]. Moreover, if we skip they’ and %" terms in Eq.(5.3),
obtained without torsiofil6]. That is, for smalin and large  then it is just the generalized geodesic deviation equation
n, the spectrum is not affected by the conformal invariance(see for instancg21]).

while there may be some minor changes in the intermediate However, we can simplify Eq5.3) further. For a massive
region. string, corresponding to the string center of mass satisfying

V. PERTURBATIONS AROUND STRING CENTER 9,,9“9"= —m?a’?, (5.5
OF MASS

The results in Secs. Il and IV were obtained for specialtrlgLenc?rtf]etWZO%Zésé?l )p(()\:?g;ar\gczgsacg_étrslngcp;%rr;g\?/aglons
string configurations. In order to see if these results are mor g v P

generic or just particular to the circular strings, we must! erefore introduce two normal vectang (R=1,2):

consider more general string configurations. .

The equations of motion and constraints E¢8.14), 9,,NRA"=0, g,,NRNg= SRs, (5.9
(2.19 can in principle be solved exactly in the case of
SL(2,R), since it is a group-manifolfll7,18, but the for- and consider only first order perturbations in the form:
mulas (see for instancg¢19]) are formal and not explicit
enough for further investigations of the string dynamics. In- 7t =nkdR, (5.7
stead, we shall use here the method of expansion around the
string center of maskl], that is, we will compute first and \where®R are the comoving perturbations, i.e., the perturba-
second order string fluctuations around the point-particleijons as seen by an observer travelling with the center of
geodesic representing the center of mass of the string. In thaass of the string. It must be noticed that for a string in a
first Subsection, we consider a generic 3-D Spacetime Witlﬂqree dimensional spacetime, there is on|y one physica| po-
arbitrary torsion. This subsection is thus the generalization 0|farization of String perturbation@ne transverse directimn
subsection IIl A in Ref[13] to the case of a spacetime with pyt since our zeroth order solution is not a string but a point-
torsion. Then, in the following subsection, we specialize toparticle, we get in some sense one polarization of perturba-
the case of 21 AdS spacetime with parallelizing torsion. tions too many at this stage. This extra degree of freedom

will eventually have to be eliminated somehow using the
A. General formalism constraints. Notice also that the normal vectors Gp) are

ot uniquely defined. In fact, there is a gauge invariance
originating from the freedom to make local rotations of the
2-bein spanned by the normal vectors. By generalizing the
procedure of Ref[13] to the case with torsion, we fix this

To be more precise, consider first the equations of motio
Eq. (2.14); the constraints will be dealt with afterwards. We
then expand1]

X4(1,0)=q*(1)+ p*(7,0)+ &X(T,0)+--- (5.1  gauge by taking the normal vectors to satisfy
where g#(7) represents the string center of mass, while q“V ,n4=0. (5.9
n*(7,0) and é*(7,0) are the first and second order string a
perturbations, respectively. Using Egs.(5.5—(5.8) in Eq. (5.3), we find after contraction

After insertion into Eq(2.14), the equations of motion are with g, nZ:
to be solved order by order in the expansion. To zeroth order wyiS:
we get: . — . ) .

(I)S_q)g_ RMo_p)\nléLngqquq)R:ZHMpqun/SLng(q)R_q)lR),
q\V,g“=0, (5.2 (5.9
which is just the standard general relativity geodesic equawhich for a given backgroundy(,, ,B,,) must be solved for

tion; obviously the torsion does not couple to the string cen®r.
ter of mass. To first order in the expansion, we get after a For the second order perturbations, the picture is a little

little algebra the following equation foy*(7,0): more complicated since they couple also to the first order
o _ perturbations. We therefore consider the full set of perturba-
AMVA(QV 57*) — RE,\G7Q7 7t — tions £~
— NO((OT T ro e — —_ ..
=2H1,9°(q°V 77— 7n'?), (5.3 PVA(QOV 564) — RE,,qPQ7 N — &7+
Whereﬁﬁpx is the generalized curvature defined via the gen- —2Hgaqp(qb7§§'f— £'9)=U*, (5.10

eralized Christoffel symbol Eq2.18):
- The termU#, which is bilinear in the first order perturba-

ﬁZw:FZV,B_FZﬁ,ﬁFZVFZB_FZ;;FQV- (5.9 tions, plays the role of a source and is explicitly given by:
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— o 1o . 2 2.2\ 2 12
=Tk (n’n"— 5Py’ %)~ 2H: 2 7'" r —(1+Hr )M (5.18
—Zl“ggv)\qpn" n“—ZHgU N whereE is an integration constafhot the same as in Egs.

(3.5, (3.6)]. These equations are solved in terms of trigono-
(5.11) metric functions, but we shall not need the explicit expres-
' sions here. A pair of independent normal-vectors satisfying
Eq. (5.6) is provided by:
After solving Eqs.(5.9), (5.10 for the first and second order
perturbations, the constraints E.15 have to be imposed. u ( 1)
In world-sheet light cone coordinates™= 7+ ¢, the con- L= '
straints take the form:

PO )\ 5
2 po)\(‘)‘qq

=z

Tos=0,,0:X 3. X"=0, (5.12 b r E
NH - ’ 2,2\ ’ 10 .
ma'(1+Hr%)’ ma
The world-sheet energy-momentum tensbr. is con- (5.19
served, as can be easily verified using Efj14), and there-
fore can be written: However, they do not satisfy the gauge-condition Eq8).

We therefore make a local rotation and define normal-vectors

Tl S T e (n¥,n%), satisfying also Eq(5.8), by:
T 27 n
" (ni‘) (COS{mHa'T) —sin(mHa’7) | [ N#
1 _i ng| = siimHa’'7) cogsmHa’'7) |\ Nf/
— in(oc+7) 2 I
Tio=oo ; L,e . (5.13 (5.20
At the classical level, the constraints are then simply: Moreover, for the background E.9):
L,=L[,=0; nez (5.14) R},,5=0, (5.20)

The quantum constraints will be considered in Sec. VI. Up tovhich expresses the fact that the torsion is parallelizing for a
second order in the expansion around the string center afroup manifold(see for instanc€21]).

mass we find: Then, Eq.(5.9 for the first order perturbations reduces to:
1 . 1 . . n
Tiiz_Zmza,2+gﬂqu(9inv+ngv,quqyﬂp (I) <D1+2mHa ( 2) 0, (522)
$,— d4—2mHa’ (P, — P})=0. (5.23

+ g,u.l/qluai §V+ g,uvé)i 77#074: 77V+ g,u.l/,pq#np(;i 77V

1 o 1 o Considering closed strings, we Fourier expand:
+ Zguv,pqﬂqV§p+ §g,uv,paqﬂqv77p7]0—' (515)

. _ | Pp=2, ¢re "7 R=12, (524
Formally, this is the same expression as in the absence of n
torsion, but one should keep in mind that the solutionszfor
and ¢ involve the torsion and are different now. so that Egs(5.22), (5.23 become:

Notice also that all results derived in this subsection hold

for arbitrary torsion(not necessarily parallelizing In the b1n b1n é1n| (O

. . +2A +B =lnl (5.25
next subsection we apply the above formalism to the case of ban don ¢2n) \0

strings in the 2- 1 AdS spacetime with parallelizing torsion.
that is, two coupled ordinary linear differential equations of

B. Strings in 3-D AdS spacetime with parallelizing torsion second order with constafinatrix) coefficients.A,3:

We now consider strings in t.he+21 AdS spacgtime with _ 0o 1 n? 2inmHa’
conformal invariance, as described by the metric and torsion A=mHa' 1 o B= SinmHa’ 2 .
Eq. (2.9). For simplicity we consider a string with radially - —eclinmHa n 55
moving center of mass: (5.26

(5.16 The first orderr-derivatives in Eq(5.25 are eliminated by a

t=t(n), = , = 1. . e
(), r=r(r), e=cons rotation similar to Eq(5.20:

Then, Egs(5.2), (5.5 are integrated to:

#1,) [(codmHa'7) —sin(mHa'7)\( ,,
E ¢2n>: siimHa’'7)  cogmHa'7) |\ ¢,/
. (5.17) " (5.27

t=
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such that: 1 |
: 2, 2122 7= 3 e MINEHING Con+ (NF=INE)Co),
d n“+m’H%a’ 2inmHa’ d 0
?ln + i ' 24 2042 12 ?ln :( >, (5.39
%y —2inmHe’  n?+m?H2%a’?)\ ¢,,/ \O
n

(5.28 in terms of the normal-vectors E¢6.19 and the oscillators
Eqg. (5.3). This concludes the derivation of the first order
and the equations are then decoupled by a unitary transfoperturbations. Notice that the frequencies are shifted away
mation: from integersn:

(‘f’ln):U(Cln); U=i(' —|)_ 529 wp=|n=mHa’|, (5.39
V2

gbZn C2n 1 1 . . . . .

and that the frequencies are different in the two directions

Then, we get: perpendicular to the geodesic of the string center of mass. It
’ is interesting to compare with the similar result inr2 AdS

o) (n+mHa’)? 0 C, 0 spacetime but without torsidr22]. In that case, the frequen-
& "+ 0 (n mHa’)Z) ( Czn) =(0), cies of the first order perturbations turned out to B2|:
2n - n
(530 wn,=yYnN°+m?H%a’'?  (without torsion. (5.3
which are solved by: . .
y Thus, in both cases the frequencies are real, and therefore the
Ci=A, e ilntmHa’ |7 L K qilntmHa’|r strings experience completely regular oscillatory behavior.
TN n ’ Moreover, for smalln (n<mHea’) and large n (n
Con=A, e—i\n—mHa’\7+“A2 giln—mHa'|~ >mHea'), the results agree, while there is a minor differ-
n n n ]

(5.3) ence in the intermediate region; in fact, from E¢5.35,
' (5.36 follow that the effect of the conformal invariance is to

where @Ag,,Ar,) are integration constants. “complete the square.” .

The final result for the first order comoving perturbations We now come to the second order perturbatigfis as
is then: determined by Eq€5.10, (5.11). The computations are now

going to be somewhat more complicated so we merely give
®, 1 - [jeimHa'r  _jg-imHa’r C, the results of the different steps. We first re-define §tse
(q) ): 5 E e no S —_ (C n). and the corresponding sourdds
n e a T e— a T 2n
(5.32

- - 1-
3 f=¢, &=(1+H>)E, ¢=—¢% (537
The constantsAgr,,Arn) are constrained by the condition
that (®,,P,) are real. This leads to:

~ ~ 1.
~ ; ~ Ut=U!, U'=(1+H?%?U" U%=-U* (539
Axn=(A1-n)" Ax=(A_p)" (5.33 r
As for the first order perturbationg”, we get: Equation(5.10 then takes the form:
gt %Ht E;t %It %t ot
g |- & | +2D| pr|v2g| g | +F | =| 0, (5.39
w) \bel s Aeel e Ao
where the matrice®, £ and F are given by:
E O
H2r _
= E 0], 54
1+H2r2 f (540
0 0 O
0 0 r
__H 0 0 E
€= Trme ' (549

(1+HZY)r —(1+HZ?E 0
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2 0 2Er 0
F= e | © 2E?—m?a’?+H?m?r? 0 : (5.42
0 (1+H?r?)m?a’?

The first orderr-derivatives in Eq(5.39 are eliminated by the transformation:

& St
=gl 5|; g=Exp(—fTD(T')dT'), (5.43
ge Se
that is:
r E 0

-1

g=m E r 0 . (5.49

0 0 —(1+H?%%ma’

We now Fourier expand the second order perturbations and Having calculated the first and second order perturbations,
the sources: we can now also calculate the world-sheet energy-
momentum tensor.. .., Egs.(5.12—(5.15. This calculation
is simplified using the fact thaf. .. are functions ofn(o

S _ S —ino
Eﬂ(T'U)_E 2n(ne ", (5.45 o 7) while the first order perturbations* are functions of
(no=|n=mHa'|7). The first order perturbations can there-
R R _ fore only give constant contributions 6. . It is then
U”(T:U)Ig Un(re " (5.46  straightforward to compute, andL,:
Then, the matrix equatio(b.39 reduces to: L0=w; [(|n+mHa’|+n)2AlnAIn

it St o T

N 2 Un +(In=mHa’|+1)2AzAl, ]~ 5 m?a’?,
STV 2R =67 Un . (5.47) 5.4
e ¢ 3 .
ﬁ:rf 2n lJn

where: Lo= 772 [(In+mHa’|—n)2A;,AlL

_ o112 _ N2_Ty_ 9 T
V=G (nl+F—D*—=D-2in&)G +(|n—mHa’|—n)2A2nAZn]—Emza'z.
n2+m?H2'2 0  2inmHa’
- 0 n2 0 . (5.48
—2inmHa’ 0 n?+m?H%a’? The constraints Eq(5.14) for n=0 then become:

(5.50

Thus, the second order perturbations are determined by a set

of three coupled linear ordinary differential equations of sec- >, n[|n+mHa’'|A3, Al +|n—mHa'|A;,AL]1=0,
ond order with constantmatrix) coefficients and a compli- n 55
cated source-term. It follows that the complete solution is (5.5
known explicitly: The matrix, Eq(5.48), is diagonalized in
the same way as in E¢5.29. The full solutions for the three
second order perturbations are then written as free wave

parts with frequencieisn+ mHa.’|, |r_1— mHe' |. andn, re- m?a’2=2> [((n+mHa’)2+n2)A, Al
spectively, plus particular solutions involving integrals of the n

sources. This concludes the derivation of the second order fo o "
perturbations. +((n—=mHa')*+n9)AzAz], (5.52

as well as:

026001-9
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determining the mass of the string. Notice that the mass fork is convenient to make the redefinitions:
mula of the string is modified with respect to the usual flat

spacetime expressiommfa’?2=43,n?[A;, Al +A,AL D). ( o’ [ a N>0
The reason for this modification is of course the presence of "V 2|n+mHea’|’ ’
the cosmological constant through both gravity and torsion. Ain= \/T
2
a‘ —_— n<o,
VI. THE QUANTUM MASS FORMULA \ " 2|n+mHa |
In this section we perform the canonical quantization us- ( ~s o’
ing the results of the previous section. The first order comov- a, m, n>0,
ing perturbations are described by the acfioompare with Ayp= (6.6)
Egs.(5.22, (5.23]: ol / @ . n<o,
L " V2|n—mHa’|

1
S¥=— —— f drdo 7?Prs o N _ ~a
Ama and similarly for the Hermitian conjugates. Thé anday,

< (DR + AR ®YY(PS + AS pV _ represent conventionally normalized oscillatgn® summa-
(Pt Ay @) (P o+ Apy @), .1 tion overR):
where the vector-potentiah}® is anti-symmetric in the R R R R
RSindices, and explicitly given by: [aq.(ap)']=[ay.(ay)']=1 for all n>0
AR=A=mH, (6.2 1
[AS.(A5) = 5— (6.7

Again, it is interesting to compare with the analogue action 2mH

in the absence of torsidr22]. In that case, the action for the
comoving first order perturbations involvedsaalar poten-
tial. Thus we see that the effect of the conformal invariancd@Ke the form:

precisely is to cancel this scalar potential and replace it by a ~

vector potential. This actually follows more generally from (Lo—2ma’a)|y)=(Lo—2ma'a)|y)=0, (6.9

Eq. (5.9. The scalar potential comes from tRe,,,\term, \yhereq is the normal-ordering constant and the factatc?
while the vector potential comes from the term on the rightis' inyroduced for later convenience. The normal-ordering

hand side. Then, in the absence of torsion in AdS spacetimeqnsiant is most easily obtained by symmetrization of the
the scalar potential survives but there is no vector potentialyqijjator products in Eqg5.49, (5.50.

Qn the oth(_ar hand, with t(_)rsion corresponding tp confo_rmal The physical state conditions E€6.8), in terms of the
invariance in AdS spacetime, the vector potential survivesg,nyentionally normalized oscillators, then become:
but there is no scalar potential since the torsion is paralleliz-

The classical constraimlsoztozo in the quantum theory

ing (R, =0). , (n+mHa’)?2+n? (n—mHa')2+n?
The momentum conjugate bR is: m-a _HZO In+mHa’| In—mHa'|
55% 1 . n+mHa')?+n? ~
S(®R) 2ma’ 0| [n+mHa'|
(6.3 n—mHa')2+n? —
- : £z ! LI (adtaz+ (2)130)
We now go directly to the quantum theory. The canonical n>0 [n—mHa'|
commutation relations become:
(6.9
R dS1— _
[CI) 1(D ]_[HR,HS]—O, and
[[g,®S]=—idx8(c—0"). (6.4) o
nZO n[(ad)Tal-(af)Tal]=0, (6.10

It follows that the constant8g, andRRn introduced in Eqs.
(5.31)—(5.33), which are now considered as quantum operayhere the zero-modes have been eliminated.

tors, have the following commutation relations: Equation(6.10 simply expresses that there must be an
, equal amount of left-movers and right-movers, so let us now
[Ag Al = s consider the quantum mass formula E&}9) in a little more
2[n+mHe’| detail. The first term in Eq(6.9) represents the zero-point

energy. At the present stage it is formally infinite and need to
be renormalized, but since it is just an overall constant, we
skip it for the moment and concentrate on the oscillator parts

!

[A2n !A;n]: (65)

2ln—mHa'|"
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of Eq. (6.9). As in Minkowski spacetime, it is convenient to It follows that the results agree in the low-mass spectrum and
characterize the physical states by the eigenvalue of thim the high-mass spectrum, while there is a minor difference
number-operator: in the intermediate region. In fact, as already discussed in

connection with the frequencies of the first order perturba-

Rt R ~RTR tions [see the discussion after E(p.36)], the effect of the
nZO [(a)"an+ (ap)ag). (61D conformal invariance is to “complete the squares.”
It means that the conclusions obtained in R&2] for

Returning to Eq(6.9), we first notice that we get the correct AdS spacetime without torsion generally hold as well in the
Minkowski spacetime resultas we shoulgin the limit H presence of torsion, corresponding to conformal invariance
=0. Moreover, for the low-mass statesifae’<1), the (parallelizing torsion In particular, the scale of the high-
spectrum is just the Minkowski spectrum with small correc-mass states is set by the Hubble constartand not bya")

tions of orderH?a’ (we always assumbl?a’<1), as follows from Eq(6.17). _
Moreover, the level spacing corresponding to E&j17),

m?a’=4N+O(H%a’); (low-mass statés (6.12  grows proportionally taN:

N=

N| -

and we skipped the zero-point energy. d(m?a’)
Consider now the high-mass stateaHa’'>1). As an dN <N. (6.19
example, we consider the state:

~ This is contrary to the case of Minkowski spacetime where it
[(a])f(ah)TNoy, (6.13 s constant. As shown if22], this implies that the density of
levels, p(m) grows like ~e'™" and that the partition func-

for some largeN (say N>(H2a’)"*. This is a state with tion for a gas of strings in AdS spacetime is well-defined for
eigenvalueN of the number-operator, and its mass is ap-any temperaturg ! (with or without torsion. That is, there

proximately: is no Hagedorn temperature in AdS spacetime.
It also follows from Eq.(6.17) that the entropy is propor-
m?a’~4H2a’'N2. 6.19  tional to Jm:
As another example of a high-mass state, consfbmr N N
even: S~ N~ m, (6.20

~ 1t 1N/ where we skipped numerical factors. It is interesting to no-
[(az)"(az)'170). (6.19 tice that this result is formally similar to the recent results of

) : the entropy obtained for the quantization of the 2 BH-
This state also has eigenvaldeof the number-operator, but 4g spacetimé23).

its mass is approximately: Notice also that the results of the canonical quantization

obtained in this section agree with the results obtained by
semi-classical quantization of circular strings obtained in
Sec. IV.

m?a’~H?a'N2. (6.16

More generally, we find for the high-mass statep to a
numerical factor.
VII. CONCLUSIONS
2 1 2 _1n\12 H
m-a’'~H%a'N high-mass states 6.1 . . .
“« “« (hig ¢ ®.17 In conclusion, we have considered classical and quantum
Notice that states with the same eigenvalue of the numbegtfings in 2+1 dimensional anti-de Sitter spacetime with
operator{for instance the states Eq®.13, (6.15], do not pargllehzmg torsion, corresponding to the conformally in-
necessarily have the same mass. This is the case both for tf@rantSL(2,R)-WZWN background. _ _
low-mass states and the high-mass states. In the low-mass BY considering special and generic string configurations
spectrum, the effect is just like a fine-structure, while in theclassically and quantum mechanically, we have extracted the
high-mass spectrum, the states are completely mixed urp_reuseeffects of the conformal invariance, both on the clas-
This is very different from the case of Minkowski spacetime Sical dynamics of strings and on the quantum mass spectrum.
where states with the same eigenvalue of the number- Generally, we have seen that the conformal invariance
operator always have the same mass. leads to a number of mathematical simplifications. On the
Finally, we should compare also with the results obtained®ther hand, the physical properties turn out to be more or less
for AdS spacetime but without torsig@2]. In that case, the Unchanged, as compared to the case without torsion.

mass formula was found to be: This means that the original results obtained in AdS
spacetime without torsiofl3,16,23 still hold in the pres-
212+ m2H2a'2 212+ m2H2a "2 ence of conformal invariance, that is, in the presence of par-
mza’=22 ——— N = ———————— allelizing torsion. At the quantum level, this means in par-
=0 yn+m’H%a’? 150 n’+m’H%a’? ticular that the high-mass states are governed by:
[ (am)ay+(a) Taq]. (6.19 m~HN; NeN, (N"large”), (7.0
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wherem is the string mass anid is the Hubble constant. It It would be interesting to generalize our analysis to higher
follows that the level spacing grows proportionally No dimensional anti—de Sitter spacetime AdSContrary to the
three dimensional case, Ag®an generally not be described

d(m?a’) as a group-manifold. It can however be represented as a
——~N, (7.2 .
dN coset-space:
while the entropy goes like: SOD-1,2
AdSp=c - (7.9
S ym. (7.3 SOD-1,1)

Moreover, it follows that there is no Hagedorn temperature]t follows that AdS, is generally not conformally invariant.

so that the partition function is well-defined at any tempera-However, as shown in Refg24,6], conformal invariance can

ture. be achieved for certain values of the cosmological constant.
These results were obtained using two independent methMore precisely, the central charge of the WZWN model of

ods, namely semi-classical quantization of circular oscillatdevel k for the coset represented in EJ.5) is [24,6,25:

ing strings and canonical quantization of string oscillator

modes. The results of the two approaches agree and they kD(D+1) kD(D—1) 76
agree with the results obtained for vanishing torsion T Ok+1-D1 _ 2[k+2-D1° 7.6
[13,16,23. [ T2 ]

The central charge in the21 AdS WZWN model takes

the value[24,6,25: As shown in Ref[24], the condition of conformal invari-

ance,
3k
C=k—2 C=26, (7.7
Conformal invariance thus holds farsuch thatc=26. This  has solutions in amrbitrary number of dimensions. How-
leads to the value fok: ever, in each dimension, the cosmological constant must take
very specific values. That is, EqS..6), (7.7) lead to an equa-
k= 5_2 (7.9 tion of the form:k=Kk(D) with solutionsD,k(D) for arbi-
- 23 ' trary values ofD.

For our purposes, we would have to consider the gauged
This means that conformal invariance holds provided thayZwN models corresponding to the coset-spaces(E®)

string tension andH are related as follows: [19,26]. This would allow us to read off the corresponding
metric and antisymmetric tensor, which are necessary for the
e 1 |23 investigation of string dynamics in these backgrounds. This
ka' 52a'’ is currently under investigation.

where we used Eq$2.10 and (7.4). ACKNOWLEDGMENTS
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